A Molecular Dynamics Simulation of the Transport Properties of Molten (La_{1/3}, K)Cl

Masahiko Matsumiya and Koichi Seo

Department of Chemical Science and Engineering, Miyakonojo National College of Technology, 473-1, Yoshio, Miyakonojo, Miyazaki, 885-8567, Japan

Reprint requests to Prof. M. M.; Fax: +81-986-47-1231; E-mail: mmatsumi@cc.miyakonojo-nct.ac.jp

Z. Naturforsch. **60a**, 187 – 192 (2005); received November 11, 2004

Molecular dynamics simulations of molten (La_{1/3}, K)Cl at 1123 K have been performed in order to investigate the correlation between simulated dynamical properties such as the self-exchange velocity (ν), the self-diffusion coefficient (D) and the electrical conductivity (κ) and the corresponding experimental values. The simulated results revealed that ν and D of potassium decrease with increasing mole fraction of lanthanum, as expected from the experimental internal cation mobilities, b. The decrease of b_K , ν_K and D_K is ascribed to the tranquilization effect by La³⁺, which strongly interacts with Cl⁻. In contrast, b_{La} , ν_{La} , and D_{La} increase with increasing concentration of La³⁺. The distorted linkage of the network structure of $[LaCl_6]^{3-}$ units was disconnected with increasing the concentration of the alkali chloride. This might be attributed to the stronger association of La³⁺ with Cl⁻ due to the enhanced charge asymmetry of the two cations neighboring Cl⁻. The sequence of the calculated ν 's, D's, and κ 's is consistent with those of the referred experimental results.

Key words: Internal Mobility; Molten Salts; Molecular Dynamics Simulation; Self-exchange Velocity.